题目内容

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,.为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知曲线与曲线交于两点,且,求实数的值.

【答案】(1)曲线普通方程,曲线的直角坐标方程;(2).

【解析】

1)将代入 的普通方程;

左右同时乘以,再化简得到曲线的直角坐标方程。

2)将代入,得,利用韦达定理与参数的几何意义可求出实数的值。

(1)曲线参数方程为

则其普通方程

因为曲线的极坐标方程为

所以

,即曲线的直角坐标方程.

(2)设两点所对应参数分别为

代入,得

要使有两个不同的交点,

,即

由韦达定理有,根据参数的几何意义可知

又由可得,即

时,有,符合题意.

时,有,符合题意.

综上所述,实数的值为.

练习册系列答案
相关题目

【题目】“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁-35岁(2009年-2018年)之间各年的月平均收入(单位:千元)的散点图:(注:年龄代码1-10分别对应年龄26-35岁)

(1)由散点图知,可用回归模型拟合的关系,试根据有关数据建立关于的回归方程;

(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.

附注:参考数据:

,其中:取.

参考公式:回归方程中斜率和截距的最小二乘估计分别为.

新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:

旧个税税率表(个税起征点3500元)

新个税税率表(个税起征点5000元)

缴税

级数

每月应纳税所得额(含税)收入个税起征点

税率

每月应纳税所得额(含税)收入个税起征点专项附加扣除

税率

1

不超过1500元的都分

3

不超过3000元的都分

3

2

超过1500元至4500元的部分

10

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元的部分

30

超过35000元至55000元的部分

30

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网