ÌâÄ¿ÄÚÈÝ
£¨2011•²ýƽÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=x2-ax+a£¨x¡ÊR£©£¬ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®Èôn¡ÊN*£¬f£¨n£©ÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãck•ck+1£¼0µÄÕýÕûÊýkµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áîcn=1-
£¨nΪÕýÕûÊý£©£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£»
£¨¢ó£©ÉèTn=
£¨n¡Ý2ÇÒn¡ÊN*£©£¬Ê¹²»µÈʽ
¡Ü(1+T2)•(1+T3)¡(1+Tn)•
ºã³ÉÁ¢£¬ÇóÕýÕûÊýmµÄ×î´óÖµ£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãck•ck+1£¼0µÄÕýÕûÊýkµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áîcn=1-
4 |
an |
£¨¢ó£©ÉèTn=
1 |
an+6 |
| ||
30 |
1 | ||
|
·ÖÎö£º£¨I£©Óɺ¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬Öª¡÷=a2-4a=0£¬µÃa=0»òa=4£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨II£©·¨Ò»£ºÓÉÌâÉècn=
£¬ÒòΪn¡Ý3ʱ£¬cn+1-cn=
-
=
£¾0£¬ËùÒÔn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
·¨¶þ£ºÓÉÌâÉècn=
£¬Öªµ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬µÃ
•
£¼0£¬½âµÃn=2»òn=4£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
¡Ü(1+
)(1+
)¡(1+
)•
£¬×ª»¯Îª
¡Ü
•
•
¡
•
•
£®ÓÉ´ËÈëÊÖÄܹ»ÍƵ¼³öÕýÕûÊýmµÄ×î´óֵΪ5£®
£¨II£©·¨Ò»£ºÓÉÌâÉècn=
|
4 |
2n-5 |
4 |
2n-3 |
8 |
(2n-5)(2n-3) |
·¨¶þ£ºÓÉÌâÉècn=
|
2n-9 |
2n-5 |
2n-7 |
2n-3 |
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
1 |
2n+1 |
| ||
30 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 | ||
|
| ||
30 |
6 |
5 |
8 |
7 |
10 |
9 |
2n |
2n-1 |
2n+2 |
2n+1 |
1 | ||
|
½â´ð£º½â£º£¨I£©¡ßº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã
¡à¡÷=a2-4a=0µÃa=0»òa=4£¨1·Ö£©
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö¹Ê²»´æÔÚ0£¼x1£¼x2£¬
ʹµÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢ £¨2·Ö£©
×ÛÉÏ£¬µÃa=4£¬f£¨x£©=x2-4x+4£®£¨3·Ö£©
¡àSn=n2-4n+4
¡àan=Sn-Sn-1=
£¨4·Ö£©
£¨II£©½â·¨Ò»£ºÓÉÌâÉècn=
¡ßn¡Ý3ʱ£¬cn+1-cn=
-
=
£¾0
¡àn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®
¡ßc4=-
£¼0£¬
ÓÉ1-
£¬µÃn¡Ý5¿ÉÖª
¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐ1¸ö±äºÅÊý£»
ÓÖ¼´¡à´Ë´¦±äºÅÊýÓÐ2¸ö
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3 £¨9·Ö£©
½â·¨¶þ£ºÓÉÌâÉècn=
µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬
µÃ
•
£¼0£¬
¼´
£¼n£¼
»ò
£¼n£¼
£¬
½âµÃn=2»òn=4£®
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àn=1ʱҲÓÐc1•c2£¼0
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3¡£¨9·Ö£©
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
¡Ü(1+
)(1+
)¡(1+
)•
¿Éת»¯Îª
¡Ü
•
•
¡
•
•
£®
Éèg£¨n£©=
•
•
¡
•
•
£¬
Ôòµ±n¡Ý2ÇÒn¡ÊN*£¬
=
=
•
=
=
£¾
=
=
=1£®
ËùÒÔg£¨n+1£©£¾g£¨n£©£¬¼´µ±nÔö´óʱ£¬g£¨n£©Ò²Ôö´ó£®
Ҫʹ²»µÈʽ
¡Ü(1+T2)(1+T3)¡(1+Tn)•
¶ÔÓÚÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè
¡Üg(n)min¼´¿É£®
ÒòΪg(n)min=g(2)•
=
•
=
£¬
ËùÒÔ
¡Ü
£®
¼´ m¡Ü
=5
ËùÒÔ£¬ÕýÕûÊýmµÄ×î´óֵΪ5£®£¨13·Ö£©
¡à¡÷=a2-4a=0µÃa=0»òa=4£¨1·Ö£©
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö¹Ê²»´æÔÚ0£¼x1£¼x2£¬
ʹµÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢ £¨2·Ö£©
×ÛÉÏ£¬µÃa=4£¬f£¨x£©=x2-4x+4£®£¨3·Ö£©
¡àSn=n2-4n+4
¡àan=Sn-Sn-1=
|
£¨II£©½â·¨Ò»£ºÓÉÌâÉècn=
|
¡ßn¡Ý3ʱ£¬cn+1-cn=
4 |
2n-5 |
4 |
2n-3 |
8 |
(2n-5)(2n-3) |
¡àn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®
¡ßc4=-
1 |
3 |
ÓÉ1-
4 |
2n-5 |
¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐ1¸ö±äºÅÊý£»
ÓÖ¼´¡à´Ë´¦±äºÅÊýÓÐ2¸ö
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3 £¨9·Ö£©
½â·¨¶þ£ºÓÉÌâÉècn=
|
µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬
µÃ
2n-9 |
2n-5 |
2n-7 |
2n-3 |
¼´
3 |
2 |
5 |
2 |
7 |
2 |
9 |
2 |
½âµÃn=2»òn=4£®
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àn=1ʱҲÓÐc1•c2£¼0
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3¡£¨9·Ö£©
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
1 |
2n+1 |
| ||
30 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 | ||
|
¿Éת»¯Îª
| ||
30 |
6 |
5 |
8 |
7 |
10 |
9 |
2n |
2n-1 |
2n+2 |
2n+1 |
1 | ||
|
Éèg£¨n£©=
6 |
5 |
8 |
7 |
10 |
9 |
2n |
2n-1 |
2n+2 |
2n+1 |
1 | ||
|
Ôòµ±n¡Ý2ÇÒn¡ÊN*£¬
g(n+1) |
g(n) |
| ||||||||||||||
|
=
2n+4 |
2n+3 |
| ||
|
2n+4 | ||
|
=
2n+4 | ||
|
2n+4 | ||
|
2n+4 | ||
|
2n+4 |
2n+4 |
ËùÒÔg£¨n+1£©£¾g£¨n£©£¬¼´µ±nÔö´óʱ£¬g£¨n£©Ò²Ôö´ó£®
Ҫʹ²»µÈʽ
| ||
30 |
1 | ||
|
¶ÔÓÚÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè
| ||
30 |
ÒòΪg(n)min=g(2)•
1 | ||
|
6 |
5 |
| ||
7 |
6
| ||
35 |
ËùÒÔ
| ||
30 |
6
| ||
35 |
¼´ m¡Ü
180 |
35 |
1 |
7 |
ËùÒÔ£¬ÕýÕûÊýmµÄ×î´óֵΪ5£®£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¼ÆËãÁ¿´ó£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£®±¾Ìâ¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿