ÌâÄ¿ÄÚÈÝ

£¨2011•²ýƽÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=x2-ax+a£¨x¡ÊR£©£¬ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®Èôn¡ÊN*£¬f£¨n£©ÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãck•ck+1£¼0µÄÕýÕûÊýkµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áîcn=1-
4
an
£¨nΪÕýÕûÊý£©£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£»
£¨¢ó£©ÉèTn=
1
an+6
£¨n¡Ý2ÇÒn¡ÊN*£©£¬Ê¹²»µÈʽ
7
m
30
¡Ü(1+T2)•(1+T3)¡­(1+Tn)•
1
2n+3
ºã³ÉÁ¢£¬ÇóÕýÕûÊýmµÄ×î´óÖµ£®
·ÖÎö£º£¨I£©Óɺ¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬Öª¡÷=a2-4a=0£¬µÃa=0»òa=4£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨II£©·¨Ò»£ºÓÉÌâÉècn=
-3            n=1
1-
4
2n-5
   n¡Ý2
£¬ÒòΪn¡Ý3ʱ£¬cn+1-cn=
4
2n-5
-
4
2n-3
=
8
(2n-5)(2n-3)
£¾0
£¬ËùÒÔn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
·¨¶þ£ºÓÉÌâÉècn=
-3             n=1
1-
4
2n-5
   n¡Ý2
£¬Öªµ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬µÃ
2n-9
2n-5
2n-7
2n-3
£¼0
£¬½âµÃn=2»òn=4£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
1
2n+1
7
m
30
¡Ü(1+
1
5
)(1+
1
7
)¡­(1+
1
2n+1
)•
1
2n+3
£¬×ª»¯Îª 
7
m
30
¡Ü
6
5
8
7
10
9
¡­
2n
2n-1
2n+2
2n+1
1
2n+3
£®ÓÉ´ËÈëÊÖÄܹ»ÍƵ¼³öÕýÕûÊýmµÄ×î´óֵΪ5£®
½â´ð£º½â£º£¨I£©¡ßº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã
¡à¡÷=a2-4a=0µÃa=0»òa=4£¨1·Ö£©
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö¹Ê²»´æÔÚ0£¼x1£¼x2£¬
ʹµÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢        £¨2·Ö£©
×ÛÉÏ£¬µÃa=4£¬f£¨x£©=x2-4x+4£®£¨3·Ö£©
¡àSn=n2-4n+4
¡àan=Sn-Sn-1=
1         n=1
2n-5  n¡Ý2
£¨4·Ö£©
£¨II£©½â·¨Ò»£ºÓÉÌâÉècn=
-3            n=1
1-
4
2n-5
   n¡Ý2

¡ßn¡Ý3ʱ£¬cn+1-cn=
4
2n-5
-
4
2n-3
=
8
(2n-5)(2n-3)
£¾0

¡àn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®
¡ßc4=-
1
3
£¼0
£¬
ÓÉ1-
4
2n-5
£¬µÃn¡Ý5¿ÉÖª
¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐ1¸ö±äºÅÊý£»     
ÓÖ¼´¡à´Ë´¦±äºÅÊýÓÐ2¸ö
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3           £¨9·Ö£©
½â·¨¶þ£ºÓÉÌâÉècn=
-3             n=1
1-
4
2n-5
   n¡Ý2

µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬
µÃ
2n-9
2n-5
2n-7
2n-3
£¼0
£¬
¼´
3
2
£¼n£¼
5
2
»ò
7
2
£¼n£¼
9
2
£¬
½âµÃn=2»òn=4£®
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àn=1ʱҲÓÐc1•c2£¼0
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3¡­£¨9·Ö£©
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
1
2n+1
7
m
30
¡Ü(1+
1
5
)(1+
1
7
)¡­(1+
1
2n+1
)•
1
2n+3

¿Éת»¯Îª    
7
m
30
¡Ü
6
5
8
7
10
9
¡­
2n
2n-1
2n+2
2n+1
1
2n+3
£®
Éèg£¨n£©=
6
5
8
7
10
9
¡­
2n
2n-1
2n+2
2n+1
1
2n+3
£¬
Ôòµ±n¡Ý2ÇÒn¡ÊN*£¬
g(n+1)
g(n)
=
6
5
8
7
10
9
¡­
2n+2
2n+1
2n+4
2n+3
1
2n+5
6
5
8
7
10
9
¡­
2n+2
2n+1
1
2n+3

=
2n+4
2n+3
2n+3
2n+5
=
2n+4
(2n+3)(2n+5)

=
2n+4
4n2+16n+15
£¾
2n+4
4n2+16n+16
=
2n+4
(2n+4)2
=
2n+4
2n+4
=1
£®
ËùÒÔg£¨n+1£©£¾g£¨n£©£¬¼´µ±nÔö´óʱ£¬g£¨n£©Ò²Ôö´ó£®
Ҫʹ²»µÈʽ
7
m
30
¡Ü(1+T2)(1+T3)¡­(1+Tn)•
1
2n+3

¶ÔÓÚÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè
7
m
30
¡Üg(n)min
¼´¿É£®
ÒòΪg(n)min=g(2)•
1
7
=
6
5
7
7
=
6
7
35
£¬
ËùÒÔ
7
m
30
¡Ü
6
7
35
£®
¼´ m¡Ü
180
35
=5
1
7

ËùÒÔ£¬ÕýÕûÊýmµÄ×î´óֵΪ5£®£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¼ÆËãÁ¿´ó£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£®±¾Ìâ¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø