题目内容

4.与函数f(x)=|x|表示同一函数的是(  )
A.f(x)=$\frac{{x}^{2}}{|x|}$B.f(x)=$\sqrt{{x}^{2}}$C.f(x)=($\sqrt{x}$)2D.f(x)=$\root{3}{{x}^{3}}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.

解答 解:对于A,函数f(x)=$\frac{{x}^{2}}{|x|}$=|x|(x≠0),与函数f(x)=|x|(x∈R)的定义域不同,所以不是同一函数;
对于B,函数f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),与函数f(x)=|x|(x∈R)的定义域相同,对应关系也相同,所以是同一函数;
对于C,函数f(x)=${(\sqrt{x})}^{2}$=x(x≥0),与函数f(x)=|x|(x∈R)的定义域不同,对应关系也不同,所以不是同一函数;
对于D,函数f(x)=$\root{3}{{x}^{3}}$=x(x∈R),与函数f(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.
故选:B.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网