题目内容
已知圆O:
和定点A(2,1),由圆O外一点
向圆O引切线PQ,切点为Q,且满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128924588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289402327.png)
(1) 求实数a、b间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128908550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128924539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128924588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289402327.png)
(1) 求实数a、b间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
(1)
;(2)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128955592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289711226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289863704.png)
试题分析:(1)连
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129002389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129002368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129018503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129033787.png)
又由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128924588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129064678.png)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129283950.png)
化简得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003128955592.png)
(2)设圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129330303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129345235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129392336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031294081967.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129423490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129454820.png)
此时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129470704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129486757.png)
得半径取最小值时圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289711226.png)
另解: 圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129595292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129610280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129704206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129314289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129610280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129751321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129610280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129782346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129798260.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129751321.png)
解方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129844958.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129860953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003129782346.png)
∴ 所求圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031289711226.png)
点评:此题主要考查了圆的标准方程,两点间的距离公式,以及二次函数的性质,熟练掌握公式及性质是解本题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目