题目内容
【题目】已知集合,集合是集合S的一个含有8个元素的子集.
(1)当时,设,
①写出方程的解();
②若方程至少有三组不同的解,写出k的所有可能取值;
(2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.
【答案】(1)①②4,6.(2)证明见详解.
【解析】
(1)①根据两个元素之差为3,结合集合的元素,即可求得;
②根据题意要求,写出集合X中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得;
(2)采用反证法,假设不存在满足条件的k,根据差数的范围推出矛盾即可.
(1)①方程的解有:.
②以下规定两数的差均为正,则:
列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;
中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;
中间相隔二数的两数差:6,9,8,9,6;
中间相隔三数的两数差:10,11,11,10;
中间相隔四数的两数差:12,14,12;
中间相隔五数的两数差:15,15;
中间相隔六数的两数差:16.
这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,
所以k的可能取值有4,6.
(2)证明:不妨设,记,
,共13个差数.假设不存在满足条件的k,
则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,
从而 ①
又
,这与①矛盾.
故假设不成立,结论成立.
即对任意一个X,存在正整数k,使得方程至少有三组不同的解.
【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.
拥有驾驶证 | 没有驾驶证 | 合计 | |
得分优秀 | |||
得分不优秀 | 25 | ||
合计 | 100 |
(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?
(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |