题目内容
【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f( ﹣ )= ,且sinB+sinC= ,求bc的值.
【答案】
(1)解:f(x)=2sinxcosx+2 cos2x﹣ =sin2x+ cos2x=2sin(2x+ ),
∵ω=2,∴f(x)的最小正周期T=π,
∵2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,
∴f(x)的单调减区间为[kπ+ ,kπ+ ],k∈Z
(2)解:由f( ﹣ )=2sin[2( ﹣ )+ ]=2sinA= ,即sinA= ,
∵A为锐角,∴A= ,
由正弦定理可得2R= = = ,sinB+sinC= = ,
∴b+c= × =13,
由余弦定理可知:cosA= = = ,
整理得:bc=40
【解析】(1)f(x)解析式利用二倍角正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出最小正周期,由正弦函数的单调性确定出f(x)的单调递减区间即可;(2)由f(x)解析式,以及f( ﹣ )= ,求出A的度数,将sinB+sinC= ,利用正弦定理化简,求出bc的值即可.
练习册系列答案
相关题目