题目内容
【题目】如图所示,是正方形所在平面外一点,在面上的正投影,
∥,.有以下四个命题:
(1)⊥面;(2);
(3)以作为邻边的平行四边形面积是8;
(4)恰在上.
其中正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
对每一个命题逐一判断得解.
因为CD⊥EF,CD⊥FG,EF∩FG=F,EF,FG平面EFG,所以⊥面,所以该命题是真
命题.
设四棱锥E-ABCD的内切球的半径为r,由题得四棱锥是棱长均为2的棱锥,
所以每个侧面的面积为,棱锥的高为,
所以,所以该命题是真命题.
以作为邻边的平行四边形面积是,所以该命题是假命题.
由题可证该四棱锥的所有棱长均为2,所以恰在上.所以该命题是真命题.
故答案为:C
【题目】中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:
井号 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:,,,)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.