题目内容
【题目】已知函数 是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a和b的值.
(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.
(3)设 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.
【答案】
(1)解:由g(0)=0得,a=1,
则 ,
经检验g(x)是奇函数,
故a=1,
由f(﹣1)=f(1)得,则 ,
故 ,
经检验f(x)是偶函数
∴a=1,
(2)解:∵ ,且g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.
∴由g(t2﹣2t)+g(2t2﹣k)>0恒成立,
得g(t2﹣2t)>﹣g(2t2﹣k)=g(﹣2t2+k),
∴t2﹣2t>﹣2t2+k,t∈[0,+∞)恒成立
即3t2﹣2t>k,t∈[0,+∞)恒成立
令F(x)=3t2﹣2t,在[0,+∞)的最小值为
∴
(3)解:h(x)=lg(10x+1),
h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10)
则由已知得,存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,
而g(x)在(﹣∞,1]单增,
∴
∴
∴
又
又∵
∴
∴
【解析】(1)由函数 是奇函数,f(x)=lg(10x+1)+bx是偶函数,可得g(0)=0,f(﹣1)=f(1),进而可得a和b的值.(2)g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.若g(t2﹣2t)+g(2t2﹣k)>0恒成立,则3t2﹣2t>k,t∈[0,+∞)恒成立,令F(x)=3t2﹣2t,求其最值,可得答案;(3)h(x)=lg(10x+1),若存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,则 ,解得答案.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.