题目内容
【题目】设函数
(1)已知在区间上单调递减,在区间上单调递增,求实数的取值范围.
(2)若对任意的,不等式在上恒成立,求的取值范围.
【答案】(1);(2).
【解析】
(1)求得导数,然后分和两种情况讨论,结合题意可得出实数的取值范围;
(2)由(1)中的结论可知,函数在区间上单调递增,在区间上单调递减,由题意可得出,结合可求得实数的取值范围.
(1),,
,令,得或.
①当时,任意的,,此时函数在区间上单调递增,不合乎题意;
②当时,列表如下:
极大值 | 极小值 |
所以,函数的单调递增区间为和,单调递减区间为.
由于函数在区间上单调递减,在区间上单调递增,
则,所以,.
因此,实数的取值范围是;
(2)当时,由(1)可知,函数在区间上单调递增,在区间上单调递减.
当时,对任意的恒成立.
,,.
因此,实数的取值范围是.
【题目】某市一农产品近六年的产量统计如下表:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
年产量(千吨) | 5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 |
观察表中数据看出,可用线性回归模型拟合与的关系.
(1)根据表中数据,将以下表格空白部分的数据填写完整,并建立关于的线性回归方程;
总和 | 均值 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | |||
5.1 | 5.3 | 5.6 | 5.5 | 6.0 | 6.1 | |||
1 | 4 | 9 | 16 | 25 | 36 | |||
5.1 | 10.6 | 16.8 | 22 | 30 | 36.6 | 121.1 |
(2)若在2025年之前该农产品每千克的价格(单位:元)与年产量满足的关系式为,且每年该农产品都能全部销售.预测在2013~2025年之间,某市该农产品的销售额在哪一年达到最大.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.
【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.
某读书APP抽样调查了非一线城市M和一线城市N各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.
(1)请填写以下列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?
活跃用户 | 不活跃用户 | 合计 | |
城市M | |||
城市N | |||
合计 |
(2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.
(3)该读书APP还统计了2018年4个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.