题目内容
【题目】已知椭圆:的离心率为,且与抛物线交于,两点, (为坐标原点)的面积为.
(1)求椭圆的方程;
(2)如图,点为椭圆上一动点(非长轴端点),为左、右焦点,的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.
【答案】(1)(2)
【解析】
(1)由题意求得a,b,c的值即可确定椭圆方程;
(2)分类讨论直线的斜率存在和斜率不存在两种情况,联立直线方程与椭圆方程,结合韦达定理和均值不等式即可确定三角形面积的最大值.
(1)椭圆与抛物线交于,两点,
可设,,
∵的面积为,
∴,解得,∴,,
由已知得,解得,,,
∴椭圆的方程为.
(2)①当直线的斜率不存在时,不妨取,,,故
;
②当直线的斜率存在时,设直线的方程为,,,
联立方程,化简得,
则,
,,
,
点到直线的距离,
因为是线段的中点,所以点到直线的距离为,
∴
∵,又,所以等号不成立.
∴,
综上,面积的最大值为.
练习册系列答案
相关题目
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.