题目内容
(2013•金华模拟)己知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.
(I)求数列{an}的通项公式及前,n项和Sn;
(II)设bn=
,若数列{bn}也是等差数列,试确定非零常数c;并求数列{
}的前n项和Tn.
(I)求数列{an}的通项公式及前,n项和Sn;
(II)设bn=
Sn |
n+c |
1 |
bn•bn+1 |
分析:(Ⅰ)由等差数列{an}的性质可得a2+a3=a1+a4=14,进而解得a2,a3,即可得到a1,d,利用通项公式和前n项和公式即可得出;
(Ⅱ)由数列{bn}是等差数列,则2b2=b1+b3,得出c,从而得出bn,再利用裂项求和即可得出Tn.
(Ⅱ)由数列{bn}是等差数列,则2b2=b1+b3,得出c,从而得出bn,再利用裂项求和即可得出Tn.
解答:解:(Ⅰ)由等差数列{an}的性质可得a2+a3=a1+a4=14,又a2a3=45.
∴
,解得
或
,
∵d>0,∴
应舍去,
因此
.
∴d=a3-a2=4,a1=a2-d=5-4=1,
∴an=1+(n-1)×4=4n-3,
Sn=n+
×4=2n2-n.
(Ⅱ)由(Ⅰ)可得bn=
,
∵数列{bn}是等差数列,则2b2=b1+b3,即2×
=
+
.
解得c=-
.
∴bn=2n.
=
=
(
-
).
∴Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
∴
|
|
|
∵d>0,∴
|
因此
|
∴d=a3-a2=4,a1=a2-d=5-4=1,
∴an=1+(n-1)×4=4n-3,
Sn=n+
n(n-1) |
2 |
(Ⅱ)由(Ⅰ)可得bn=
2n2-n |
n+c |
∵数列{bn}是等差数列,则2b2=b1+b3,即2×
6 |
2+c |
1 |
1+c |
15 |
3+c |
解得c=-
1 |
2 |
∴bn=2n.
1 |
bnbn+1 |
1 |
2n•2(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
∴Tn=
1 |
4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=
1 |
4 |
1 |
n+1 |
=
n |
4(n+1) |
点评:熟练掌握等差数列的性质、通项公式和前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关题目