题目内容

在△ABC中,abc分别为角ABC的对边,设 f(x)=a2x2-(a2b2)x-4c2.
(1)若 f(1)=0,且BC,求角C;                          
(2)若 f(2)=0,求角C的取值范围.
解:(1)由 f(1)=0,得a2-a2+b2-4c2=0,∴b=2c  -----------2分
又由正弦定理,得b=2RsinBc=2RsinC
将其代入上式,得sinB=2sinC       --------------------------4
BC ∴BC,将其代入上式,得sin(C)=2sinC
∴sincosC+cossinC=2sinC,     -----------------------------5分
整理得,sinC=cosC          ------------------------- --------6
∴tanC
∵角C是三角形的内角,∴C            ---------------8分
(2)∵ f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2b2-2c2=0  ------9分
由余弦定理,得cosC   ------------10分
cosC (当且仅当ab时取等号)  ---------------------11分
∴cosC
C是锐角,又∵余弦函数在(0,)上递减,∴0<C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网