题目内容
在△ABC中,a,b,c分别为角A,B,C的对边,设 f(x)=a2x2-(a2-b2)x-4c2.
(1)若 f(1)=0,且B-C=
,求角C;
(2)若 f(2)=0,求角C的取值范围.
(1)若 f(1)=0,且B-C=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
(2)若 f(2)=0,求角C的取值范围.
解:(1)由 f(1)=0,得a2-a2+b2-4c2=0,∴b=2c -----------2分
又由正弦定理,得b=2RsinB,c=2RsinC,
将其代入上式,得sinB=2sinC
--------------------------4分
∵B-C=
∴B=
+C,将其代入上式,得sin(
+C)=2sinC
∴sin
cosC+cos
sinC=2sinC, -----------------------------5分
整理得,
sinC=cosC ------------------------- --------6分
∴tanC=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720316267.gif)
∵角C是三角形的内角,∴C=
---------------8分
(2)∵ f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2+b2-2c2=0 ------9分
由余弦定理,得cosC=
------------10分
∴
cosC=
≥
=
(当且仅当a=b时取等号) ---------------------11分
∴cosC≥
,
∠C是锐角,又∵余弦函数在(0,
)上递减,∴0<C≤![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
又由正弦定理,得b=2RsinB,c=2RsinC,
将其代入上式,得sinB=2sinC
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082319172019172.gif)
∵B-C=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
∴sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
整理得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720300225.gif)
∴tanC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720316267.gif)
∵角C是三角形的内角,∴C=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720347239.gif)
(2)∵ f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2+b2-2c2=0 ------9分
由余弦定理,得cosC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720362664.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082319172039472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720394484.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720425456.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720440225.gif)
∴cosC≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720440225.gif)
∠C是锐角,又∵余弦函数在(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720472233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823191720175230.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目