题目内容
在△ABC中,a,b,c分别为角A,B,C的对边,设 f(x)=a2x2-(a2-b2)x-4c2.
(1)若 f(1)=0,且B-C=,求角C;
(2)若 f(2)=0,求角C的取值范围.
(1)若 f(1)=0,且B-C=,求角C;
(2)若 f(2)=0,求角C的取值范围.
解:(1)由 f(1)=0,得a2-a2+b2-4c2=0,∴b=2c -----------2分
又由正弦定理,得b=2RsinB,c=2RsinC,
将其代入上式,得sinB=2sinC --------------------------4分
∵B-C= ∴B=+C,将其代入上式,得sin(+C)=2sinC
∴sincosC+cossinC=2sinC, -----------------------------5分
整理得,sinC=cosC ------------------------- --------6分
∴tanC=
∵角C是三角形的内角,∴C= ---------------8分
(2)∵ f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2+b2-2c2=0 ------9分
由余弦定理,得cosC= ------------10分
∴cosC=≥= (当且仅当a=b时取等号) ---------------------11分
∴cosC≥,
∠C是锐角,又∵余弦函数在(0,)上递减,∴0<C≤
又由正弦定理,得b=2RsinB,c=2RsinC,
将其代入上式,得sinB=2sinC --------------------------4分
∵B-C= ∴B=+C,将其代入上式,得sin(+C)=2sinC
∴sincosC+cossinC=2sinC, -----------------------------5分
整理得,sinC=cosC ------------------------- --------6分
∴tanC=
∵角C是三角形的内角,∴C= ---------------8分
(2)∵ f(2)=0,∴4a2-2a2+2b2-4c2=0,即a2+b2-2c2=0 ------9分
由余弦定理,得cosC= ------------10分
∴cosC=≥= (当且仅当a=b时取等号) ---------------------11分
∴cosC≥,
∠C是锐角,又∵余弦函数在(0,)上递减,∴0<C≤
略
练习册系列答案
相关题目