题目内容
PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012, PM2.5日均值在35微克/立方米以下空气质量为一级;在35~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值频数如茎叶图所示(十位为茎,个位为叶):
(I)求空气质量为超标的数据的平均数与方差;
(II)从空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;
(III)以这12天的PM2.5日均值来估计2012年的空气质量情况,估计2012年(366天)大约有多少天的空气质量达到一级或二级.
(1)82,18.5
(2)0.1
(3)2012年的366天中空气质量达到一级或二级的天数估计为244天.
解析试题分析:解:(I)空气质量为超标的数据有四个:77,79,84,88
平均数为 (2分)
方差为 (4分)
(II)空气质量为二级的数据有五个:47,50,53,57,68
任取两个有十种可能结果:{47,50},{47,53},{47,57},{47,68},{50,53},
{50,57},{50,68},{53,57},{53,68},{57,68}.
两个数据和小于100的结果有一种:{47,50}.
记“两个数据和小于100”为事件A,则
即从空气质量为二级的数据中任取2个,这2个数据和小于100的概率为 (8分)
(III)空气质量为一级或二级的数据共8个,所以空气质量为一级或二级的频率为(10分),
,所以2012年的366天中空气质量达到一级或二级的天数估计为244天. (12分)
考点:茎叶图和均值方差
点评:主要是考查了茎叶图的运用,以及古典概型概率的计算,属于中档题。
在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。下表是9位同学的选择题和填空题的得分情况(选择题满分60分,填空题满分16分):
选择题 | 40 | 55 | 50 | 45 | 50 | 40 | 45 | 60 | 40 |
填空题 | 12 | 16 | 12 | 16 | 12 | 8 | 12 | 8 |
(Ⅱ)在(1)的条件下,记这9位同学的选择题得分组成的集合为A,填空题得分组成的集合为B。若同学甲的解答题的得分是46分,现分别从集合A、B中各任取一个值当作其选择题和填空题的得分,求甲的数学成绩高于100分的概率。
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
月份 | 1 | 2 | 3 | 4 | 5 |
用水量 | 4 5 | 4 | 3 | 2 5 | 1 8 |
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0 05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率
参考公式:回归直线方程是:,
为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
| 高茎 | 矮茎 | 合计 |
圆粒 | 11 | 19 | 30 |
皱粒 | 13 | 7 | 20 |
合计 | 24 | 26 | 50 |
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:分别加以统计,得到如图所示的频率分布直方图.
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
25周岁以上组 25周岁以下组
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2)试预测加工10个零件需要多少时间?
n-2 | 1 | 2 | 3 | 4 |
小概率0.05 | 0.997 | 0.950 | 0.878 | 0.811 |
小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 |