题目内容

15.在如图所示的多面体ABCDEF中.四边形ABCD为矩形.EA⊥平面ABCD.EF∥AB,AB=4,AE=EF=2,则点D到平面FBC的距离为(  )
A.2B.2$\sqrt{2}$C.3$\sqrt{2}$D.4

分析 由题意,可将点D到平面BCF的距离可化为点A到平面BCF的距离,再转化为平面ABEF内点A到直线BF的距离,从而利用面积相等求解.

解答 解:∵四边形ABCD是矩形,
∴AD∥BC,
∴点D到平面BCF的距离可化为点A到平面BCF的距离,
又∵EA⊥平面ABCD,
∴平面ABEF⊥平面ABCD,
∴平面BCF⊥平面ABEF,
∴点A到平面BCF的距离可化为平面ABEF内点A到直线BF的距离,
则在平面ABEF内,BF=2$\sqrt{2}$,
∴$\frac{1}{2}$×2$\sqrt{2}$×h=$\frac{1}{2}$×4×2,
则h=2$\sqrt{2}$.
故选:B.

点评 本题考查线面、面面垂直,考查相似的转化能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网