题目内容
18.设f(x)=|x-a|-$\frac{4}{x}$+a,x∈[1,6],a∈(1,6).(Ⅰ)若a∈(1,2],求f(x)的单调区间;
(Ⅱ)求f(x)的最小值.
分析 (Ⅰ)运用绝对值的定义,将f(x)转化,讨论a∈(1,2],函数f(x)在[1,a]上,在[a,6]上的单调性即可得到;
(Ⅱ)讨论①当1<a≤2时,②当2<a<6时,函数的单调性,即可得到最小值.
解答 解:(Ⅰ)首先f(x)=$\left\{\begin{array}{l}{2a-(x+\frac{4}{x}),1≤x≤a}\\{x-\frac{4}{x},a<x≤6}\end{array}\right.$,
因为当1<a≤2时,f(x)在[1,a]上是增函数,在[a,6]上也是增函数.
所以当1<a≤2时,y=f(x)在[1,6]上是增函数;
(Ⅱ)①当1<a≤2时,由(Ⅰ)知,f(x)min=f(1)=2a-5,
②当2<a<6时,f(x)在[1,2]上是增函数,在[2,a]上是减函数,在[a,6]上是增函数.
又f(1)=2a-5,f(a)=a-$\frac{4}{a}$,且f(1)-f(a)=a+$\frac{4}{a}$-5>0,解得4<a<6
所以当2<a<4时,f(x)min=f(1)=2a-5,
当4≤a<6时,f(x)min=f(a)=a-$\frac{4}{a}$.
综上可知,f(x)min=$\left\{\begin{array}{l}{2a-5,1<a<4}\\{a-\frac{4}{a},4≤a<6}\end{array}\right.$.
点评 本题考查分段函数的运用,主要考查函数的单调区间和最值的求法,注意运用分类讨论的思想方法和函数的单调性的性质是解题的关键.
练习册系列答案
相关题目
9.某市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
记某企业每天由于空气污染造成的经济损失为S(单位:元),空气质量指数API为ω,在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元.
(Ⅰ)试写出S(ω)表达式;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:参考数据与公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(Ⅰ)试写出S(ω)表达式;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
13.正实数数列{an}满足:a1=1,a9=7,且an+1=$\frac{({a}_{n}+1)^2-({a}_{n-1}+1)}{{a}_{n-1}+1}$(n∈N+,n≥2)则a5=( )
A. | 4 | B. | 3 | C. | 16 | D. | 9 |
3.在平面直角坐标系xOy中,已知点A是半圆x2-4x+y2=0(2≤x≤4)上的一个动点,点C在线段OA的延长线上.当$\overrightarrow{OA}•\overrightarrow{OC}=20$时,点C的轨迹为( )
A. | 线段 | B. | 圆弧 | C. | 抛物线一段 | D. | 椭圆一部分 |
8.已知$({2+\sqrt{3}i})•z=-2\sqrt{3}i$(i是虚数单位),那么复数z对应的点位于复平面内的( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |