题目内容
【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段、、、、分成了五组,其频率分布直方图如下图所示,参保年龄与每人每年应交纳的保费如下表所示.
年龄(单位:岁) | |||||
保费(单位:元) |
(1)求频率分布直方图中实数的值,并求出该样本年龄的中位数;
(2)现分别在年龄段、、、、中各选出人共人进行回访.若从这人中随机选出人,求这人所交保费之和大于元的概率.
【答案】(1),中位数为;(2).
【解析】
(1)利用频率分布直方图中所有矩形的面积之和为能求出的值,利用中位数左侧矩形的面积之和为可求出该样本年龄的中位数;
(2)回访的这人分别记为、、、、,从人中任选人,利用列举法能求出这人所交保费之和大于元的概率.
(1),解得:.
设该样本年龄的中位数为,前两个矩形的面积之和为,
前三个矩形的面积之和为,所以
,解得;
(2)设回访的这人分别记为、、、、,
从人中任选人的基本事件有:、、、、、、、、、,共种.
事件“两人保费之和大于元”包含的基本事件有:、、、,共种.
两人保费之和大于元的概率为.
练习册系列答案
相关题目