题目内容
【题目】设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.
(1)求椭圆C的标准方程;
(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.
【答案】(1)(2)见解析
【解析】
(1) 由,周长,解得,即可求得标准方程.
(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.
(1)由题意得,周长,且.
联立解得,,所以椭圆C的标准方程为.
(2)①当直线l的斜率不存在时,不妨设其方程为,
则,
所以,即.
②当直线l的斜率存在时,设其方程为,并设,
由,
,,
由直线l与圆E相切,得.
所以
.
从而,即.
综合上述,得为定值.
练习册系列答案
相关题目
【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段、、、、分成了五组,其频率分布直方图如下图所示,参保年龄与每人每年应交纳的保费如下表所示.
年龄(单位:岁) | |||||
保费(单位:元) |
(1)求频率分布直方图中实数的值,并求出该样本年龄的中位数;
(2)现分别在年龄段、、、、中各选出人共人进行回访.若从这人中随机选出人,求这人所交保费之和大于元的概率.