题目内容
如图所示,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线CD交AE于点F,交AB于点D.
(1)求∠ADF的度数;
(2)若AB=AC,求AC∶BC.
(1) 45° (2)
解析解:(1)∵AC为圆O的切线,
∴∠B=∠EAC,
又∵CD是∠ACB的平分线,
∴∠ACD=∠DCB,
∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.
又∵BE为圆O的直径,∴∠DAE=90°,
∴∠ADF=(180°-∠DAE)=45°.
(2)∵∠B=∠EAC,∠ACB=∠ACB,
∴△ACE∽△BCA,
∴=.又∵AB=AC,∴∠B=∠ACB=30°,
∴在Rt△ABE中, ="tan" B="tan" 30°=,
∴==.
练习册系列答案
相关题目