题目内容
已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.
(1)或;(2)详见解析.
解析试题分析:(1)先设点的坐标,利用两点间的距离公式将表示为为自变量的函数,利用基本不等式求出相应的最小值,然后列方程求出的值;(2)令,将函数的零点转化为求方程的根,对首项系数的符号进行分类讨论,以及在首项系数不为零时对的符号进行分类讨论,从而确定函数在定义域上是否存在零点,并且在零点存在的前提下利用求根公式求出相应的零点值.
试题解析:(1)依题可设 (),则;
又的图像与直线平行
, ,
设,则
当且仅当时,取得最小值,即取得最小值
当时, 解得
当时, 解得
(2)由(),得
当时,方程有一解,函数有一零点;
当时,方程有二解,
若,,
函数有两个零点,即;
若,,
函数有两个零点,即;
当时,方程有一解, ,
函数有一零点
综上,当时, 函数有一零点;
当(),或()时,
函数有两个零点;
当时,函数有一零点.
考点:1.两点间的距离公式;2.基本不等式;3.分类讨论;4.一元二次方程的求解
练习册系列答案
相关题目