ÌâÄ¿ÄÚÈÝ
20£®Èçͼ£¬ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£¬E£¬F·Ö±ðÊÇA1B1£¬CC1µÄÖе㣬¹ýD1£¬E£¬F×÷ƽÃæD1EGF½»BB1ÓÚG£®¸ø³öÒÔÏÂÎå¸ö½áÂÛ£º¢ÙEG¡ÎD1F£»
¢ÚBG=3GB1£»
¢ÛƽÃæD1EGF¡ÍƽÃæCDD1C1£»
¢ÜÖ±ÏßD1EÓëFGµÄ½»µãÔÚÖ±ÏßB1C1ÉÏ£»
¢Ý¼¸ºÎÌåABGEA1-DCFD1µÄÌå»ýΪ$\frac{41}{6}$£®ÆäÖÐÕýÈ·µÄ½áÂÛÓТ٢ڢܢݣ¨ÌîÉÏËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©
·ÖÎö ¢ÙÀûÓÃÃæÃæƽÐеÄÐÔÖʶ¨Àí¼´¿ÉÅжϳöÕýÎó£»
¢ÚÈçͼËùʾ£¬È¡BB1µÄÖеãM£¬Á¬½ÓA1M£¬FM£®ÔòËıßÐÎA1D1FMÊÇƽÐÐËıßÐΣ¬ÔÙÀûÓÃÈý½ÇÐεÄÖÐλÏ߶¨Àí¿ÉµÃGÊÇB1MµÄÖе㣬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÓÉA1D1¡ÍƽÃæCDD1C1£¬¿ÉµÃƽÃæA1D1FM¡ÍƽÃæCDD1C1£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÖ±ÏßD1EÓëFGµÄ½»µã¼ÈÔÚƽÃæA1B1C1D1ÉÏ£¬ÓÖÔÚƽÃæBCC1B1ÉÏ£¬Òò´ËÔÚƽÃæA1B1C1D1ÓëƽÃæBCC1B1µÄ½»ÏßÉÏ£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÝÏȼÆËãÈýÀą̂B1EG-C1D1FµÄÌå»ýV1£®ÀûÓü¸ºÎÌåABGEA1-DCFD1µÄÌå»ýΪ=${V}_{Õý·½ÌåA{C}_{1}}$-V1£¬¼´¿ÉÅжϳöÕýÎó
½â´ð ½â£º¶ÔÓÚ¢Ù£¬¡ßƽÃæABB1A1¡ÎƽÃæDCC1D1£¬Æ½ÃæD1EGF¡ÉƽÃæABB1A1=EG£¬Æ½ÃæD1EGF¡ÉƽÃæDCC1D1=D1F£¬¡àEG¡ÎD1F£»
¶ÔÓÚ¢Ú£¬ÈçͼËùʾ£¬È¡BB1µÄÖеãM£¬Á¬½ÓA1M£¬FM£®ÔòËıßÐÎA1D1FMÊÇƽÐÐËıßÐΣ¬¡àA1M¡ÎD1F£¬¡àA1M¡ÎEG£¬ÓÖµãEÊÇA1B1µÄÖе㣬
¡àGÊÇB1MµÄÖе㣬¡àBG=3GB1£»
¶ÔÓÚ¢Û£¬¡ßA1D1¡ÍƽÃæCDD1C1£¬¡àƽÃæA1D1FM¡ÍƽÃæCDD1C1£¬¿ÉµÃƽÃæD1EGFÓëƽÃæCDD1C1²»¿ÉÄÜ´¹Ö±£¬Òò´Ë²»ÕýÈ·£»
¶ÔÓڢܣ¬Ö±ÏßD1EÓëFGµÄ½»µã¼ÈÔÚƽÃæA1B1C1D1ÉÏ£¬ÓÖÔÚƽÃæBCC1B1ÉÏ£¬Òò´ËÔÚƽÃæA1B1C1D1ÓëƽÃæBCC1B1µÄ½»ÏßB1C1ÉÏ£¬ÕýÈ·£»
¶ÔÓڢݣ¬¡ß${S}_{¡÷F{C}_{1}{D}_{1}}$=$\frac{1}{2}¡Á2¡Á1$=1£¬${S}_{¡÷{B}_{1}EG}$=$\frac{1}{2}¡Á1¡Á\frac{1}{2}$=$\frac{1}{4}$£¬¸ßB1C1=2£¬¡àÈýÀą̂B1EG-C1D1FµÄÌå»ýV1=$\frac{1}{3}¡Á2¡Á£¨1+\sqrt{1¡Á\frac{1}{4}}+\frac{1}{4}£©$=$\frac{7}{6}$£®
¡à¼¸ºÎÌåABGEA1-DCFD1µÄÌå»ýΪ=${V}_{Õý·½ÌåA{C}_{1}}$-V1=23-$\frac{7}{6}$=$\frac{41}{6}$£¬Òò´ËÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü¢Ý£®
µãÆÀ ±¾Ì⿼²éÁË¿Õ¼äÏßÃæÃæÃæλÖùØϵ¼°ÆäÅж¨·½·¨¡¢ÈýÀą̂µÄÌå»ý¼ÆË㹫ʽ£¬¿¼²éÁË¿Õ¼äÏëÏóÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\frac{\sqrt{6}}{6}$ | B£® | $\frac{2\sqrt{6}}{3}$ | C£® | $\frac{\sqrt{6}}{3}$ | D£® | $\frac{4\sqrt{6}}{3}$ |
A£® | 2 | B£® | 4 | C£® | 6 | D£® | 4$\sqrt{3}$ |
A£® | [-$\frac{1}{2}$£¬1] | B£® | [-1£¬1] | C£® | [-$\frac{\sqrt{3}}{2}$£¬$\frac{\sqrt{3}}{2}$] | D£® | [-$\frac{\sqrt{3}}{2}$£¬1] |
A£® | $\frac{{\sqrt{2}}}{3}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{{\sqrt{3}}}{6}$ | D£® | $\frac{{\sqrt{5}}}{3}$ |