题目内容

定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2﹣|x﹣4|,则(  )

A.B.
C.D.

D

解析试题分析:利用函数的周期性及x∈[3,5]时的表达式f(x)=2-|x-4|,可求得x∈[-1,1]时的表达式,从而可判断逐个选项的正误。解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,又当x∈[3,5]时f(x)=2-|x-4|,∴当-1≤x≤1时,x+4∈[3,5],∴f(x)=f(x+4)=2-|x|,∴f(sin))=f()=-=f(cos )),排除A, f(sin1)=2-sin1<2-cos1=f(cos1)排除B, f(sin))=2-<2-=f(cos))=f(cos  ),D正确; f(sin2)=2-sin2<2-(-cos2)=f(cos2)排除C.故选D
考点:函数的周期性
点评:本题考查函数的周期性,难点在于求x∈[-1,1]时的表达式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网