题目内容
【题目】已知椭圆的离心率为,左、右焦点分别为,且,
⊙与该椭圆有且只有一个公共点.
(1)求椭圆标准方程;
(2)过点的直线与⊙相切,且与椭圆相交于两点,求证:;
(3)过点的直线与⊙相切,且与椭圆相交于两点,试探究的数量关系.
【答案】(1)(2)见解析(3)
【解析】分析:(1)直接根据已知条件得到a,b,c的方程组,解之即得椭圆标准方程.(2)先联立直线的方程和椭圆方程得到韦达定理,再证明即证.(3) 猜想再证明.
详解:(1)⊙与椭圆有且只有一个公共点,公共点为或,
若公共点为时,则,又,
解得,与矛盾,故公共点为.
,又.
反之,当时,联立解得满足条件.
椭圆标准方程为.
(2),设过的直线,联立,得.
设,则,又,
.
由与⊙相切得
,即.
(3)猜:.证明如下:由(2)得.
.
【题目】深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:
球队胜 | 球队负 | 总计 | |
甲参加 | |||
甲未参加 | |||
总计 |
(1)求的值,据此能否有的把握认为球队胜利与甲球员参赛有关;
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:.则:
1)当他参加比赛时,求球队某场比赛输球的概率;
2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?
附表及公式:
.
【题目】为了鼓励节约用电,辽宁省实行阶梯电价制度,其中每户的用电单价与户年用电量的关系如下表所示.
分档 | 户年用电量(度) | 用电单价(元/度) |
第一阶梯 | 0.5 | |
第二阶梯 | 0.55 | |
第三阶梯 | 0.80 |
记用户年用电量为度时应缴纳的电费为元.
(1)写出的解析式;
(2)假设居住在沈阳的范伟一家2018年共用电3000度,则范伟一家2018年应缴纳电费多少元?
(3)居住在大连的张莉一家在2018年共缴纳电费1942元,则张莉一家在2018年用了多少度电?