题目内容

如图,已知焦点在x轴上的椭圆
x2
20
+
y2
b2
=1(b>0)
经过点M(4,1),直线l:y=x+m交椭圆于A,B两不同的点.
(1)求该椭圆的标准方程;
(2)求实数m的取值范围;
(3)是否存在实数m,使△ABM为直角三角形,若存在,求出m的值,若不存,请说明理由.
(1)依题意
16
20
+
1
b2
=1
,解得b2=5,…(2分)
所以椭圆的标准方程是
x2
20
+
y2
5
=1
.…(3分)
(2)由
y=x+m
x2
20
+
y2
5
=1
得5x2+8mx+4m2-20=0,…(4分)
∵直线l与椭圆有两个不同的交点,
∴△=(8m)2-20(4m2-20)=-16m2+400>0…(6分)
解得-5<m<5.…(7分)
(3)假设存在实数m满足题意,
当MA⊥AB时,直线MA的方程为y-1=-(x-4),即y=-x+5.
y=-x+5
x2
20
+
y2
5
=1
得x2-8x+16=0,解得
x=4
y=1

故A(4,1),与点M重合,不合题意.
同理,当MB⊥AB时,也不合题意.…(9分)
当MA⊥MB时,设A(x1,y1),B(x2,y2).
由(2)得x1+x2=-
8m
5
x1x2=
4m2-20
5

y1+y2=x1+x2+2m,y1•y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2.…(10分)
MA
=(x1-4,y1-1)
MB
=(x2-4,y2-1)

MA
MB
=(x1-4)(x2-4)+(y1-1)(y2-1)
…(11分)
=x1x2-4(x1+x2)+16+y1y2-(y1+y2)+1
=2x1x2+(m-5)(x1+x2)+m2-2m+17
=2•
4m2-20
5
+(m-5)(-
8m
5
)+m2-2m+17

=
40m-40
5
+m2-2m+17
=m2+6m+9.…(13分)
MA
MB
=0

∴m2+6m+9=0,
解得m=-3∈(-5,5),
综上所述,存在实数m=-3使△ABM为直角三角形.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网