题目内容

15.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=3,|{\overrightarrow a+\overrightarrow b}|=\sqrt{17}$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

分析 $|{\overrightarrow a}|=1,|{\overrightarrow b}|=3,|{\overrightarrow a+\overrightarrow b}|=\sqrt{17}$,可得$\sqrt{17}$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$,解得2$\overrightarrow{a}•\overrightarrow{b}$=7.代入可得$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$.

解答 解:∵$|{\overrightarrow a}|=1,|{\overrightarrow b}|=3,|{\overrightarrow a+\overrightarrow b}|=\sqrt{17}$,
∴$\sqrt{17}$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+{3}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$,
解得2$\overrightarrow{a}•\overrightarrow{b}$=7.
则$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+{3}^{2}-7}$=$\sqrt{3}$,
故选:B.

点评 本题考查了向量数量积的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网