题目内容

(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,

∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

(1)求证:PC⊥

(2)求证:CE∥平面PAB;

(3)求三棱锥P-ACE的体积V.

 

【答案】

 

(1) 略

(2) 略

(3) V=

【解析】解:(1)在Rt△ABC中,AB=1,∠BAC=60°,

∴BC=,AC=2.取中点,连AF, EF,

∵PA=AC=2,∴PC⊥.      (1分)

∵PA⊥平面ABCD,平面ABCD,

∴PA⊥,又∠ACD=90°,即

,∴

.                       (3分)

.                 (4分)

∴PC⊥.             (5分)

 

(2)证法一:取AD中点M,连EM,CM.则

EM∥PA.∵EM 平面PAB,PA平面PAB,

∴EM∥平面PAB.               (7分)

在Rt△ACD中,∠CAD=60°,AC=AM=2,

∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

∵MC 平面PAB,AB平面PAB,

∴MC∥平面PAB.                        (9分)

∵EM∩MC=M,∴平面EMC∥平面PAB.

∵EC平面EMC,∴EC∥平面PAB.      (10分)

                                

证法二:延长DC、AB,设它们交于点N,连PN.

∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.          (7分)

∵E为PD中点,∴EC∥PN.                                (9分)

∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB.              (10分)

(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.  (12分)

则V=.                         (14分)

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网