题目内容
【题目】某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,米,B为半圆上任意一点,以AB为一边作等腰直角,其中BC为斜边.
若;,求四边形OACB的面积;
现决定对四边形OACB区域地块进行开发,将区域开发成垂钓中心,预计每平方米获利10元,将区域开发成亲子采摘中心,预计每平方米获利20元,则当为多大时,垂钓中心和亲子采摘中心获利之和最大?
【答案】(1)平方米;(2)
【解析】
计算时和的面积,求和得出四边形OABC的面积;
设,求出和的面积和,得出目标函数的解析式,再求该函数取得最大值时对应的值.
当时,
平方米;
在中,由余弦定理得,
;
平方米,
四边形OABC的面积为
平方米;
设,则,
所以,
在中,由余弦定理得,
;
,
不妨设垂钓中心和亲子中心获利之和为y元,
则有;
化简得;
因为,
所以当时,垂钓中心和亲子采摘中心获利之和最大.
练习册系列答案
相关题目