题目内容
【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.
【答案】
(1)解: = .…(1分)
因为x=2为f(x)的极值点,所以f'(2)=0.
即 ,解得a=0.
又当a=0时,f'(x)=x(x﹣2),从而x=2为f(x)的极值点成立
(2)解:因为f(x)在区间[3,+∞)上为增函数,
所以 在区间[3,+∞)上恒成立.①当a=0时,f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上为增函数,故a=0符合题意.
②当a≠0时,由函数f(x)的定义域可知,必须有2ax+1>0对x≥3恒成立,故只能a>0,
所以2ax2+(1﹣4a)x﹣(4a2+2)≥0对x∈[3,+∞)上恒成立.
令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其对称轴为 ,
因为a>0所以 ,从而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,
因为g(3)=﹣4a2+6a+1≥0,
解得 .
因为a>0,所以 .
由①可得,a=0时,符合题意;
综上所述,a的取值范围为[0, ]
(3)解:若 时,方程 x>0 可化为, .
问题转化为b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,
即求函数g(x)=xlnx+x2﹣x3的值域.
以下给出两种求函数g(x)值域的方法:
方法1:因为g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),
则 ,
所以当0<x<1,h′(x)>0,从而h(x)在(0,1)上为增函数,
当x>1,h′(x)<0,从而h(x')在(1,+∞上为减函数,
因此h(x)≤h(1)=0.
而x>1,故b=xh(x)≤0,
因此当x=1时,b取得最大值0.
方法2:因为g(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.
设p(x)=lnx+1+2x﹣3x2,则 .
当 时,p'(x)>0,所以p(x)在 上单调递增;
当 时,p'(x)<0,所以p(x)在 上单调递减;
因为p(1)=0,故必有 ,又 ,
因此必存在实数 使得g'(x0)=0,
∴当0<x<x0时,g′(x)<0,所以g(x)在(0,x0)上单调递减;
当x0<x<1,g′(x)>0,所以,g(x)在(x0,1)上单调递增;
又因为 ,
当x→0时,lnx+ <0,则g(x)<0,又g(1)=0.
因此当x=1时,b取得最大值0
【解析】(1)先对函数求导,由x=2为f(x)的极值点,可得f'(2)=0,代入可求a(2)由题意可得 在区间[3,+∞)上恒成立,①当a=0时,容易检验是否符合题意,②当a≠0时,由题意可得必须有2ax+1>0对x≥3恒成立,则a>0,从而2ax2+(1﹣4a)x﹣(4a2+2)≥0对x∈[3,+∞0上恒成立.考查函数g(x)=2ax2+(1﹣4a)x﹣(4a2+2),结合二次函数的性质可求(3)由题意可得 .问题转化为b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函数g(x)=xlnx+x2﹣x3的值域. 方法1:构造函数g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),对函数h(x)求导,利用导数判断函数h(x)的单调性,进而可求
方法2:对函数g(x)=x(lnx+x﹣x2)求导可得g'(x)=lnx+1+2x﹣3x2 . 由导数知识研究函数p(x)=lnx+1+2x﹣3x2 , 的单调性可求函数g(x)的零点,即g'(x0)=0,从而可得函数g(x)的单调性,结合 ,可知x→0时,lnx+ <0,则g(x)<0,又g(1)=0可求b的最大值
【题目】已知二次函数的最小值为3,且.
求函数的解析式;
(2)若偶函数(其中),那么, 在区间上是否存在零点?请说明理由.
【答案】(1)(2)存在零点
【解析】试题分析:(1)待定系数法,己知函数类型为二次函数,又知f(-1)=f(3),所以对称轴是x=1,且函数最小值f(1)=3,所设函数,且,代入f(-1)=11,可解a。
(2)由题意可得,代入,由和根的存在性定理, 在区间(1,2)上存在零点。
试题解析:(1)因为是二次函数,且
所以二次函数图像的对称轴为.
又的最小值为3,所以可设,且
由,得
所以
(2)由(1)可得,
因为,
所以在区间(1,2)上存在零点.
【点睛】
(1)对于求己知类型函数的的解析式,常用待定系数法,由于二次函数的表达式形式比较多,有一般式,两点式,顶点式,由本题所给条件知道对称轴与顶点坐标,所以设顶点式。
(2)对于判定函数在否存在零点问题,一般解决此类问题的三步曲是:①先通过观察函数图象再估算出根所在的区间;②根据方程根的存在性定理证明根是存在的;③最后根据函数的性质证明根是唯一的.本题给了区间,可直接用根的存在性定理。
【题型】解答题
【结束】
20
【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | |
超过1500元至4500元的部分 | |
超过4500元至9000元的部分 |
(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资,薪金所得为,当月应缴纳个人所得税为元,写出与的函数关系式;
(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?
【题目】某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下面是某日水深的数据:
t/h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/m | 10 | 13 | 10 | 7 | 10 | 13 | 10 | 7 | 10 |
经长期观察,y=f(t)的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).
(1)求y与t满足的函数关系式;
(2)某船吃水深度(船底离水面的距离)为6.5m,如果该船希望在同—天内安全进出港,请问该船在什么时间段能够安全进港?它同一天内最多能在港内停留多少小时?(忽略进 出港所需的时间).
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”