题目内容
(本小题满分12分)已知函数.(1)当时,求函数的最小值;(2)若对任意的,恒成立,试求实数的取值范围
(1)(2)
解析
(本小题满分12分)已知函数,当时,函数在x=2处取得最小值1。(1)求函数的解析式;(2)设k>0,解关于x的不等式。
(本题满分14分)已知函数.(Ⅰ) 讨论的奇偶性; (Ⅱ)判断在上的单调性并用定义证明.
(本小题满分14分)已知函数.(1)当时,讨论的单调性;(2)设当时,若对任意,存在,使恒成立,求实数取值范围.
(本小题满分10分)已知, 若在区间上的最大值为, 最小值为, 令.(1) 求的函数表达式;(2) 判断的单调性, 并求出的最小值.
(本小题满分16分)已知函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)试判断函数在(,)上的单调性,并证明你的结论;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,(1)求a、b、c的值; (2)求函数的递减区间。
(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;(1)如果函数在上是减函数,在上是增函数,求的值;(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。(3)设常数,求函数的最大值和最小值;
(本小题满分14分)已知(,为此函数的定义域)同时满足下列两个条件:①函数在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数;请解答以下问题:(1) 求闭函数符合条件②的区间;(2) 判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数的取值范围;