题目内容

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2

【答案】B
【解析】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆半径为r,则 ,得到r=h,所以截面圆的面积为πh2; 故选B.
由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆,明确其半径求面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网