题目内容

设向量
a
=(1,2),
b
=(2,3),若向量λ
a
+
b
与向量
c
=(-4,-7)共线,则实数λ的值为(  )
分析:先求出向量λ
a
+
b
 的坐标,再利用两个向量共线的性质可得-4•(2λ+3 )-(λ+2)•(-7)=0,由此求得实数λ的值.
解答:解:∵向量
a
=(1,2),
b
=(2,3),故向量λ
a
+
b
=(λ+2,2λ+3),
再由向量λ
a
+
b
与向量
c
=(-4,-7)共线,可得-4(2λ+3 )-(λ+2)(-7)=0,
解得λ=2,
故选B.
点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网