题目内容

设向量
a
=(-1,2),
b
=(m,1),如果向量
a
+2
b
与2
a
-
b
平行,那么
a
b
的数量积等于(  )
A、-
7
2
B、-
1
2
C、
3
2
D、
5
2
分析:由已知向量的坐标求出向量
a
+2
b
与2
a
-
b
的坐标,再由向量
a
+2
b
与2
a
-
b
平行列式求出m的值,则
a
b
的数量积可求.
解答:解:∵向量
a
=(-1,2),
b
=(m,1),
a
+2
b
=(-1,2)+2(m,1)=(2m-1,4),
2
a
-
b
=2(-1,2)-(m,1)=(-2-m,3).
由向量
a
+2
b
与2
a
-
b
平行,得
3×(2m-1)-4(-2-m)=0,解得:m=-
1
2

b
=(-
1
2
,1),
a
b
=-1×(-
1
2
)+2×1=
5
2

故选:D.
点评:平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若
a
=(a1,a2),
b
=(b1,b2),则
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0.是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网