题目内容

已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。
(Ⅰ).(Ⅱ)见解析。

试题分析:(1)由于先由椭圆C的离心率和椭圆过点M(2,1),列出方程组,再由方程组求出a,b,由此能求出椭圆方程
(2)联立直线与椭圆的方程,结合韦达定理得到根与系数的关系,那么再结合斜率公式得到证明。
解:(Ⅰ)设椭圆的方程为:
由题意得: ∴ 椭圆方程为
(Ⅱ)由直线,可设,将式子代入椭圆得:
,则
设直线的斜率分别为,则 
下面只需证明:,事实上,


点评:解决该试题的关键是能利用椭圆的性质得到a,b,c,的值,进而得到椭圆方程,同时能利用韦达定理得到斜率的关系式。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网