题目内容
【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边, ,那么下面说法正确的是( )
A. 平面平面
B. 四面体的体积是
C. 二面角的正切值是
D. 与平面所成角的正弦值是
【答案】D
【解析】
沿折后如图, ,易知是二面角的平面角,
, 由余弦定理得
,可得,过作于,连接,则,由面积相等得,可得.①平面与平面不垂直, 错;
②由于, 错;
③易知为二面角的平面角, , 错;
④与平面所成的角是, ,选
点晴:本题主要考查的是平面垂直的判定,锥的体体积,平面和平面所成的角及直线与平面所成的角.求体积经常用等体积转化法,二面角可由线面关系得到二面角的平面角转到三角形中求解.线面角的关键是找到斜线上一点向面的垂线是关键,斜线和其在面内的射影所成的角为线面角.
练习册系列答案
相关题目
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在和的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)