题目内容
【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)﹣loga(3+ax),请判定g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.
【答案】
(1)解:由题意:f(x)=log3(3﹣3x),
∴3﹣3x>0,即x<1,
所以函数f(x)的定义域为(﹣∞,1)
(2)解:易知g(x)=loga(3﹣ax)﹣loga(3+ax),
∵3﹣ax>0,且3+ax>0,
∴ ,关于原点对称,
又∵g(x)=loga(3﹣ax)﹣loga(3+ax)= ,
∴g(﹣x)= =﹣ =﹣g(x),
∴g(x)为奇函数
(3)解:令u=3﹣ax,∵a>0,a≠1,
∴u=3﹣ax在[2,3]上单调递减,
又∵函数f(x)在[2,3]递增,∴0<a<1,
又∵函数f(x)在[2,3]的最大值为1,
∴f(3)=1,
即f(3)=loga(3﹣3a)=1,
∴
【解析】(1)根据对数函数的性质求出函数的定义域即可;(2)根据奇函数的定义证明即可;(3)令u=3﹣ax,求出u=3﹣ax在[2,3]上的单调性,根据f(x)的最大值,求出a的值即可.
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为: