题目内容

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E为BC1的中点,则DE与面BCC1B1所成角的正切值为(

A.
B.
C.
D.

【答案】C
【解析】解:设正方体ABCD﹣A1B1C1D1的棱长为2,
以D为原点,以DA为x轴,以DC为y轴,
以DD1为z轴,建立空直角坐标系,
∵E为BC1的中点,
∴D(0,0,0),E(1,2,1),
=(1,2,1),
设DE与面BCC1B1所成角的平面角为θ,
∵面BCC1B1的法向量
∴sinθ=|cos< >|=| |=
∴cosθ= =
∴tanθ= =
故选:C.

【考点精析】关于本题考查的空间角的异面直线所成的角,需要了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网