题目内容
【题目】如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是( )
A.BD∥平面CB1D1
B.AC1⊥BD
C.异面直线AD与CB1角为60°
D.AC1⊥平面CB1D1
【答案】C
【解析】解:在A中,∵BD∥B1D1 , BD平面CB1D1 , B1D1平面CB1D1 ,
∴BD∥平面CB1D1 , 故A正确;
在B中,∵ABCD是正方形,∴AC⊥BD,
∵ABCD﹣A1B1C1D1为正方体,∴CC1⊥BD,
∵AC∩CC1=C,∴BD⊥平面ACC1 , ∴AC1⊥BD,故B正确;
在C中,∵AD∥BC,∴∠BCB1是异面直线AD与CB1所成角,
∵BCC1B1是正方形,∴∠BCB1=45°,
∴异面直线AD与CB1角为45°,故C错误;
在D中,∵A1B1C1D1是正方形,∴A1C1⊥B1D1 ,
∵ABCD﹣A1B1C1D1为正方体,∴CC1⊥B1D1 ,
∵A1C1∩CC1=C1 , ∴B1D1⊥平面ACC1 , ∴AC1⊥B1D1 ,
同理,AC1⊥CB1 , ∵B1D1∩CB1=B1 , ∴AC1⊥平面CB1D1 , 故D正确.
故选:C.
【考点精析】根据题目的已知条件,利用异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
练习册系列答案
相关题目