题目内容
已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.
m=-2时,f(x)有唯一零点,该零点为0
【解析】∵f(x)=4x+m·2x+1有且仅有一个零点,
即方程(2x)2+m·2x+1=0仅有一个实根.
设2x=t(t>0),则t2+mt+1=0,
当Δ=0时,即m2-4=0,
∴m=2或m=-2.
又m=-2时,t=1,m=2时,t=-1(不合题意,舍去),
∴2x=1,x=0符合题意.
当Δ>0时,即m>2或m<-2时,
t2+mt+1=0有两正或两负根,
即f(x)有两个零点或没有零点,
∴这种情况不符合题意.
综上可知:m=-2时,f(x)有唯一零点,该零点为0.
练习册系列答案
相关题目