题目内容
【题目】已知函数.
(1)当时,若函数恰有一个零点,求的取值范围;
(2)当时, 恒成立,求的取值范围.
【答案】(1) 或 (2)
【解析】【试题分析】(1)函数的定义域为,当时, ,所以,对分类讨论,得到函数的单调区间,由此求得的取值范围.(2) 令,利用的导数,对分类讨论函数的单调区间,利用最大值小于零,来求得的取值范围.
【试题解析】
(1)函数的定义域为,
当时, ,所以,
①当时, 时无零点,
②当时, ,所以在上单调递增,
取,则,
因为,所以,此时函数恰有一个零点,
③当时,令,解得,
当时, ,所以在上单调递减;
当时, ,所以在上单调递增.
要使函数有一个零点,则即,
综上所述,若函数恰有一个零点,则或;
(2)令,根据题意,当时, 恒成立,又,
①若,则时, 恒成立,所以在上是增函数,且,所以不符题意.
②若,则时, 恒成立,所以在上是增函数,且,所以不符题意.
③若,则时,恒有,故在上是减函数,于是“对任意,都成立”的充要条件是,即,解得,故.
综上, 的取值范围是.
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取2组数据,求选取的这组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.