题目内容
【题目】已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数的最大值.
【答案】(1)(-∞,1)(2)
【解析】
试题(1)解本小题的关键是利用,把原函数转化为关于t的二次函数,的值域问题.(2)在(1)的基础上可确定在上是减函数,然后根据f(x)的最小值为-7,建立关于a的方程求出a值,从而得到函数f(x)的最大值.
设
(1)对称轴 在上是减函数
所以值域为----------------------------------------- 6
(2)∵由
所以在上是减函数
或(不合题意舍去)------------------------11
当时有最大值,
即-----------------------------------------------13
练习册系列答案
相关题目