题目内容

【题目】下列函数f(x)中,满足“任意x1 , x2∈(0,+∞),且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=ln x
D.f(x)=2x

【答案】A
【解析】解:若对任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1)﹣f(x2)]<0, 则f(x)在区间(0,+∞)上为减函数,
A中,f(x)= ﹣x在区间(0,+∞)上为减函数,满足条件,
B中,f(x)=x3在区间(0,+∞)上为增函数,不满足条件,
C中,f(x)=lnx在区间(0,+∞)上为增函数,不满足条件,
D中,f(x)=2x在区间(0,+∞)上为增函数,不满足条件,
故选:A.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网