ÌâÄ¿ÄÚÈÝ
£¨2013•ÑÓÇìÏØһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²CµÄÖÐÐÄΪԵ㣬½¹µãF1£¬F2ÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ
£®¹ýF1µÄÖ±Ïß½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª8£®¹ý¶¨µãM£¨0£¬3£©µÄÖ±Ïßl1ÓëÍÖÔ²C½»ÓÚG£¬HÁ½µã£¨µãGÔÚµãM£¬HÖ®¼ä£©£®
£¨¢ñ£© ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl1µÄбÂÊk£¾0£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®Èç¹û´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 | 2 |
£¨¢ñ£© ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl1µÄбÂÊk£¾0£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®Èç¹û´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©ÀûÓÃÍÖÔ²µÄÀëÐÄÂʼÆË㹫ʽe=
¼°Æ䶨Òå¼´¿ÉµÃµ½a£¬b£¬c£¬½ø¶ø¼´¿ÉµÃµ½ÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨II£©ÉèÖ±Ïßl1µÄ·½³ÌΪy=kx+3£¨k£¾0£©£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢£¬ÓÉÖ±ÏßÓëÍÖÔ²ÓÉÁ½¸ö²»Í¬µÄ½»µã?¡÷£¾0£¬¿ÉµÃkµÄÈ¡Öµ·¶Î§£¬¼°Æä¸ùÓëϵÊýµÄ¹Øϵ£»
¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®¡±µÈ¼ÛÓÚ¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃPN¡Íl1¡±£®¼´¿ÉµÃµ½ÓÃk±íʾm£¬ÀûÓõ¼Êý¼´¿ÉµÃ³öÈ¡Öµ·¶Î§£®
c |
a |
£¨II£©ÉèÖ±Ïßl1µÄ·½³ÌΪy=kx+3£¨k£¾0£©£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢£¬ÓÉÖ±ÏßÓëÍÖÔ²ÓÉÁ½¸ö²»Í¬µÄ½»µã?¡÷£¾0£¬¿ÉµÃkµÄÈ¡Öµ·¶Î§£¬¼°Æä¸ùÓëϵÊýµÄ¹Øϵ£»
¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®¡±µÈ¼ÛÓÚ¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃPN¡Íl1¡±£®¼´¿ÉµÃµ½ÓÃk±íʾm£¬ÀûÓõ¼Êý¼´¿ÉµÃ³öÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨¢ñ£©ÉèÍÖÔ²µÄ·½³ÌΪ
+
=1(a£¾b£¾0)£¬ÀëÐÄÂÊe=
=
£¬
¡÷ABF2µÄÖܳ¤Îª|AF1|+|AF2|+|AF1|+|AF2|=4a=8£¬
½âµÃa=2£¬c=1£¬Ôòb2=a2-c2=3£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ
+
=1£®
£¨¢ò£©Ö±Ïßl1µÄ·½³ÌΪy=kx+3£¨k£¾0£©£¬
ÓÉ
£¬ÏûÈ¥y²¢ÕûÀíµÃ£¨3+4k2£©x2+24kx+24=0£¨*£©£¬
¡÷=£¨24k£©2-4¡Á24¡Á£¨3+4k2£©£¾0£¬½âµÃk£¾
£¬
ÉèÍÖÔ²µÄÏÒGHµÄÖеãΪN£¨x0£¬y0£©£¬
Ôò¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®¡±µÈ¼ÛÓÚ¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃPN¡Íl1¡±£®
ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃ£¬x1+x2=-
£¬
ËùÒÔx0=
=-
£¬¡ày0=kx0+3¨T
£¬
¡àN(-
£¬
)£¬kPN=-
£¬
ËùÒÔ£¬-
•k=-1£¬½âµÃm=-
(k£¾
)£®
m¡ä(k)=
£¾
£¾0£¬
ËùÒÔ£¬º¯Êým=-
(k£¾
)ÔÚ¶¨ÒåÓò(
£¬+¡Þ)µ¥µ÷µÝÔö£¬m(
)=-
£¬
ËùÒÔÂú×ãÌõ¼þµÄµãP£¨m£¬0£©´æÔÚ£¬mµÄÈ¡Öµ·¶Î§Îª(-
£¬+¡Þ)£®
x2 |
a2 |
y2 |
b2 |
c |
a |
1 |
2 |
¡÷ABF2µÄÖܳ¤Îª|AF1|+|AF2|+|AF1|+|AF2|=4a=8£¬
½âµÃa=2£¬c=1£¬Ôòb2=a2-c2=3£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨¢ò£©Ö±Ïßl1µÄ·½³ÌΪy=kx+3£¨k£¾0£©£¬
ÓÉ
|
¡÷=£¨24k£©2-4¡Á24¡Á£¨3+4k2£©£¾0£¬½âµÃk£¾
| ||
2 |
ÉèÍÖÔ²µÄÏÒGHµÄÖеãΪN£¨x0£¬y0£©£¬
Ôò¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG¡¢PHΪÁڱߵÄƽÐÐËıßÐÎΪÁâÐΣ®¡±µÈ¼ÛÓÚ¡°ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃPN¡Íl1¡±£®
ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃ£¬x1+x2=-
24k |
3+4k2 |
ËùÒÔx0=
x1+x2 |
2 |
12k |
3+4k2 |
9 |
3+4k2 |
¡àN(-
12k |
3+4k2 |
9 |
3+4k2 |
9 |
12k+m(3+4k2) |
ËùÒÔ£¬-
9 |
12k+m(3+4k2) |
3k |
3+4k2 |
| ||
2 |
m¡ä(k)=
3(2k-
| ||||
(3+4k2)2 |
3(
| ||||||
(3+4k2)2 |
ËùÒÔ£¬º¯Êým=-
3k |
3+4k2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||
6 |
ËùÒÔÂú×ãÌõ¼þµÄµãP£¨m£¬0£©´æÔÚ£¬mµÄÈ¡Öµ·¶Î§Îª(-
| ||
6 |
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²µÄ¶¨Òå¡¢±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹Øϵ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐԵȻù´¡ÖªÊ¶Óë½âÌâģʽ£¬ÐèÒª½ÏÇ¿µÄÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿