题目内容
5.在正方体ABCD-A1B1C1D1中,O是底面ABCD对角线的交点.(Ⅰ)求证:BD⊥平面ACC1A1;
(Ⅱ)求直线BC与平面ACC1A1所成的角.
分析 (Ⅰ)欲证明直线与平面垂直,可以先证明直线与直线垂直,由BD⊥CC1,BD⊥AC可得BD⊥平面ACC1A1.
(Ⅱ)由已知得AA1⊥BD,AC⊥BD,从而BD⊥平面ACC1A1,∠BCO为直线BC与平面ACC1A1所成的角,由此能求出直线BC与平面ACC1A1所成角.
解答 (Ⅰ)证明:∵ABCD-A1B1C1D1是正方体,
∴CC1⊥平面ABCD,
∴BD⊥CC1
∵ABCD是正方形,∴BD⊥AC
又∵AC,CC1?平面ACC1A1,且AC∩CC1=C,
∴BD⊥平面ACC1A1.(6分)
(Ⅱ)解:在正方体ABCD-A1B1C1D1中,
∵AA1⊥平面ABCD,∴AA1⊥BD,
又在正方形ABCD中,AC⊥BD,
∵AC∩AA1=A,∴BD⊥平面ACC1A1,
∴∠BCO为直线BC与平面ACC1A1所成的角,
在正方形ABCD中,由题意知∠BCO=45°,
∴直线BC与平面ACC1A1所成角为45°.(12分)
点评 本题考查直线与平面平行的证明,考查直线与平面所成角的大小的求法,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关题目
14.正四棱锥S-ABCD中,SA=AB=2,则直线AC与平面SBC所成角的正弦值为( )
A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |