ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨cos¦Á£¬sin¦Á£©£¬$\overrightarrow{b}$=£¨cos¦Â£¬sin¦Â£©£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$£®£¨1£©Çó$\overrightarrow{a}$•$\overrightarrow{b}$µÄÖµ£»
£¨2£©Èô0£¼¦Á£¼$\frac{¦Ð}{2}$£¬-$\frac{¦Ð}{2}$£¼¦Â£¼0£¬ÇÒsin¦Â=-$\frac{3}{5}$£¬Çósin£¨¦Á+¦Â£©µÄÖµ£®
·ÖÎö £¨1£©ÓÉÒÑ֪ģµÄµÈʽÁ½±ßƽ·½£¬µÃµ½ËùÇó£»
£¨2£©ÓÉ£¨1£©Çó³ö¦Á-¦Â£¬µÃµ½sin£¨¦Á+¦Â£©=sin£¨$\frac{¦Ð}{2}$+2¦Â£©=cos2¦Â£¬½øÒ»²½ÀûÓñ¶½Ç¹«Ê½ÇóÖµ£®
½â´ð ½â£º£¨1£©ÒòΪ|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$£¬
ËùÒÔ|$\overrightarrow{a}$-$\overrightarrow{b}$|2=2¼´${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}=2$£¬
ÓÖ${\overrightarrow{a}}^{2}$=${\overrightarrow{b}}^{2}$=1£¬
ËùÒÔ$\overrightarrow{a}•\overrightarrow{b}$=0£»
£¨2£©ÒòΪ0£¼¦Á£¼$\frac{¦Ð}{2}$£¬-$\frac{¦Ð}{2}$£¼¦Â£¼0£¬ÇÒsin¦Â=-$\frac{3}{5}$£¬
ËùÒÔ0£¼¦Á-¦Â£¼¦Ð£¬
ÓÖ$\overrightarrow{a}•\overrightarrow{b}$=cos¦Ácos¦Â+sin¦Ásin¦Â=cos£¨¦Á-¦Â£©=0£¬
ËùÒÔ$¦Á-¦Â=\frac{¦Ð}{2}$£¬¼´$¦Á=\frac{¦Ð}{2}+¦Â$£¬
ËùÒÔsin£¨¦Á+¦Â£©=sin£¨$\frac{¦Ð}{2}$+2¦Â£©=cos2¦Â=1-2sin2¦Â=1-2¡Á$\frac{9}{25}$=$\frac{7}{25}$£®
µãÆÀ ±¾Ì⿼²éÁËƽÃæÏòÁ¿µÄÊýÁ¿»ý¡¢Ä£µÄÔËËãÒÔ¼°Èý½Çº¯ÊýµÄ»¯¼òÇóÖµ£®±È½Ï»ù´¡£®
A£® | $\frac{1}{ab}£¾\frac{1}{2}$ | B£® | a2+b2¡Ý8 | C£® | $\sqrt{ab}$¡Ý2 | D£® | $\frac{1}{a}+\frac{1}{b}$¡Ü1 |
A£® | 8 | B£® | 9 | C£® | 10 | D£® | 11 |
A£® | 1 | B£® | 0 | C£® | -1 | D£® | 2 |
A£® | 4$\sqrt{2}$ | B£® | 2$\sqrt{2}$ | C£® | 2$\sqrt{10}$ | D£® | $\sqrt{10}$ |