题目内容
【题目】过抛物线的一条弦的中点作平行于抛物线对称轴的平行线(或与对称轴重合),交抛物线于一点,称以该点及弦的端点为顶点的三角形为这条弦的阿基米德三角形(简称阿氏三角形).
现有抛物线:,直线:(其中,,是常数,且),直线交抛物线于,两点,设弦的阿氏三角形是.
(1)指出抛物线的焦点坐标和准线方程;
(2)求的面积(用,,表示);
(3)称的阿氏为一阶的;、的阿氏、为二阶的;、、、的阿氏三角形为三阶的;……,由此进行下去,记所有的阶阿氏三角形的面积之和为,探索与之间的关系,并求.
【答案】(1)焦点坐标:,准线方程:;(2);(3),
【解析】
(1)将抛物线方程化为标准方程后即可求得焦点坐标和准线方程;
(2)将直线方程代入抛物线方程,利用韦达定理可求得,根据可整理得到,代入整理可得结果;
(3)由(2)知,继续求解阿氏三角形面积可知,进而分析得到;可知为无穷等比数列,利用无穷等比数列前项和的极限的求法可求得结果.
(1)由得:
抛物线焦点坐标为,准线方程为:
(2)将代入抛物线方程得:,则
设,
则中点,
又,
(3)设是抛物线上的任意一条弦,由(2)知
设弦、的阿氏三角形依次为,
上述讨论表明,阶中的每一个阿氏三角形都可以生成阶中的两个阿氏三角形,且后者的面积之和是前者面积的
阶中的个阿氏三角形面积之和与阶中的个阿氏三角形面积之和满足
是首先为,公比为的无穷等比数列
【题目】某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:
单价x(元) | 6 | 6.2 | 6.4 | 6.6 | 6.8 | 7 |
销量y(万件) | 80 | 74 | 73 | 70 | 65 | 58 |
数据显示单价x与对应的销量y满足线性相关关系.
(1)求销量y(件)关于单价x(元)的线性回归方程;
(2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).
参考公式:==,
【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:
用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值和方差;
(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?
(参考数据:)