题目内容
(12分)(1)设x、y、zR,且x+y+z=1,求证x2+y2+z2≥;
(2)设二次函数f (x)=ax2+bx+c(a>0),方程f (x)-x=0有两个实根x1,x2,
且满足:0<x1<x2<,若x(0,x1)。
求证:x<f (x)<x1
(2)设二次函数f (x)=ax2+bx+c(a>0),方程f (x)-x=0有两个实根x1,x2,
且满足:0<x1<x2<,若x(0,x1)。
求证:x<f (x)<x1
见解析。
本试题主要是考查了均值不等式的运用以及二次函数中根与系数的关系的综合运用。
(1)x+y+z=1,∴1=(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
≤3(x2+y2+z2)
从而得证。
(2)令F(x)=f(x)-x,x1,x2是f(x)-x=0的根,
∴F(x)=a(x-x1)(x-x2)
∵0<x<x1<x2< ∴x-x1<0,x-x2<0 a>0
∴F(x)>0 即x<f (x)
x1-f (x)=x1-[x+F(x)]=x1-x-a(x-x1)(x-x2)=(x1-x)[1+a(x-x2)]
∵0<x<x1<x2<
∴x1-x>0 1+a(x-x2)=1+a x-ax2>1-ax2>0
∴x1-f(x)>0 ∴f(x)<x1
综上可知成立。
解:(1)∵x+y+z=1,∴1=(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
≤3(x2+y2+z2)
∴x2+y2+z2≥
(2)令F(x)=f(x)-x,x1,x2是f(x)-x=0的根,
∴F(x)=a(x-x1)(x-x2)
∵0<x<x1<x2< ∴x-x1<0,x-x2<0 a>0
∴F(x)>0 即x<f (x)
另一方面:x1-f (x)=x1-[x+F(x)]=x1-x-a(x-x1)(x-x2)=(x1-x)[1+a(x-x2)]
∵0<x<x1<x2<
∴x1-x>0 1+a(x-x2)=1+a x-ax2>1-ax2>0
∴x1-f(x)>0 ∴f(x)<x1
综上可得:x<f(x)<x1
(1)x+y+z=1,∴1=(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
≤3(x2+y2+z2)
从而得证。
(2)令F(x)=f(x)-x,x1,x2是f(x)-x=0的根,
∴F(x)=a(x-x1)(x-x2)
∵0<x<x1<x2< ∴x-x1<0,x-x2<0 a>0
∴F(x)>0 即x<f (x)
x1-f (x)=x1-[x+F(x)]=x1-x-a(x-x1)(x-x2)=(x1-x)[1+a(x-x2)]
∵0<x<x1<x2<
∴x1-x>0 1+a(x-x2)=1+a x-ax2>1-ax2>0
∴x1-f(x)>0 ∴f(x)<x1
综上可知成立。
解:(1)∵x+y+z=1,∴1=(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
≤3(x2+y2+z2)
∴x2+y2+z2≥
(2)令F(x)=f(x)-x,x1,x2是f(x)-x=0的根,
∴F(x)=a(x-x1)(x-x2)
∵0<x<x1<x2< ∴x-x1<0,x-x2<0 a>0
∴F(x)>0 即x<f (x)
另一方面:x1-f (x)=x1-[x+F(x)]=x1-x-a(x-x1)(x-x2)=(x1-x)[1+a(x-x2)]
∵0<x<x1<x2<
∴x1-x>0 1+a(x-x2)=1+a x-ax2>1-ax2>0
∴x1-f(x)>0 ∴f(x)<x1
综上可得:x<f(x)<x1
练习册系列答案
相关题目