题目内容

17.设函数f(x)=x2-mx(m,x∈R).
(1)求证:f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)];
(2)设数列{an}的前n项和Sn=f(n)(n∈N*),且a1=2,从数列{an}中抽取a1,a2,a4,…a${\;}_{{2}^{n}}$,…依次构成数列{bn},的项,求{bn}的通项公式;
(3)在条件(2)下,数列cn=anbn,求数列{cn}的前n项和Tn

分析 (1)通过作差比较f($\frac{{x}_{1}+{x}_{2}}{2}$)-$\frac{1}{2}$[f(x1)+f(x2)]与0的大小关系,化简即得结论;
(2)通过(1)、利用Sn=n2+n与Sn+1=(n+1)2+(n+1)作差、计算即得结论;
(3)通过(2)可知cn=n2n+1,利用错位相减法计算即得结论.

解答 (1)证明:∵f($\frac{{x}_{1}+{x}_{2}}{2}$)-$\frac{1}{2}$[f(x1)+f(x2)]
=($\frac{{x}_{1}+{x}_{2}}{2}$)2-m•$\frac{{x}_{1}+{x}_{2}}{2}$-$\frac{1}{2}$(${{x}_{1}}^{2}$-mx1+${{x}_{2}}^{2}$-mx2
=$\frac{1}{2}•$$\frac{{{x}_{1}}^{2}+2{x}_{1}{x}_{2}+{{x}_{2}}^{2}}{2}$-$\frac{m}{2}$(x1+x2)-$\frac{1}{2}$(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$-mx1-mx2
=$\frac{1}{2}$x1x2-$\frac{1}{4}$(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)
=-$\frac{1}{4}$(x1-x22
≤0,
∴f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)];
(2)解:依题意,Sn=f(n)=n2-mn,
又∵a1=f(1)=1-m=2,
∴m=-1,
∴Sn=n2+n,Sn+1=(n+1)2+(n+1),
∴an+1=Sn+1-Sn=(n+1)2+(n+1)-(n2+n)=2(n+1),
又∵a1=2满足上式,
∴an=2n,
∴bn=${a}_{{2}^{n-1}}$=2•2n-1=2n
即数列{bn}的通项公式bn=2n
(3)解:cn=anbn=2n•2n=n2n+1
∴Tn=1•22+2•23+…+n•2n+1
$\frac{1}{2}•$Tn=1•21+2•22+…+(n-1)•2n-1+n•2n
两式相减得:-$\frac{1}{2}•$Tn=21+22+…+2n-1+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1
=(1-n)•2n+1-2,
∴Tn=-2[(1-n)•2n+1-2]
=4+(n-1)•2n+2

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网