题目内容
设函数f(x)=
x2+bx-
.已知不论α,β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0.对于正项数列{an},其前n项和为Sn=f(an)n∈N*.
(1)求实数b;
(2)求数列{an}的通项公式;
(3)若Cn=
(n∈N+)且数列{Cn}的前n项和为Tn,比较Tn与
的大小,并说明理由.
1 |
4 |
3 |
4 |
(1)求实数b;
(2)求数列{an}的通项公式;
(3)若Cn=
1 |
(1+an)2 |
1 |
6 |
分析:(1)由于α,β为何实数,得出cosα,2-sinβ的取值范围,再根据f(cosα)≤0,f(2-sinβ)≥0,可知f(1)=0求得b.
(2)根据函数解析式分别表示出Sn和Sn-1,进而根据an=Sn-Sn-1整理得(an+an-1)(an-an-1-2)=0进而判断出an-an-1=2,推断数列{an}是等差数列,求得a1利用等差数列的通项公式求得an.
(3)把(2)中求得cn,利用裂项法求得Tn=
(
-
)进而可证明Tn<
.
(2)根据函数解析式分别表示出Sn和Sn-1,进而根据an=Sn-Sn-1整理得(an+an-1)(an-an-1-2)=0进而判断出an-an-1=2,推断数列{an}是等差数列,求得a1利用等差数列的通项公式求得an.
(3)把(2)中求得cn,利用裂项法求得Tn=
1 |
2 |
1 |
3 |
1 |
2n+3 |
1 |
6 |
解答:解:(1)∵cosα∈[-1,1],sinβ∈[-1,1],2-sinβ∈[1,3]
不论α、β为何实数恒有 f(cosα)≤0,f(2-sinβ)≥0
即对x∈[-1,1]有f(x)≤0对x∈[1,3]有f(x)≥0
∴x=1时f(1)=0
(2)∵Sn=f(an)=
+
an-
⇒Sn-1=
+
an-1-
∴n≥2时Sn-Sn-1=an=
(
-
)+
(an-an+1)
∴(an+an-1)(an-an-1-2)=0∵an>0∴an-an-1=2
∴{an}是首项为a,公差为2的等数列
由a1=S1代入方程a1=
+
a1-
⇒
-2a1-3=0
∴a1=3∴an=3+2(n-1)=2n+1
(3)∵Cn=
=
<
=
(
-
)
∴Tn=C1+C2+…+Cn<
[
-
+
-
+…+
-
]=
(
-
)=
-
<
不论α、β为何实数恒有 f(cosα)≤0,f(2-sinβ)≥0
即对x∈[-1,1]有f(x)≤0对x∈[1,3]有f(x)≥0
∴x=1时f(1)=0
(2)∵Sn=f(an)=
1 |
4 |
a | 2 n |
1 |
2 |
3 |
4 |
1 |
4 |
a | 2 n-1 |
1 |
2 |
3 |
4 |
∴n≥2时Sn-Sn-1=an=
1 |
4 |
a | 2 n |
a | 2 n-1 |
1 |
2 |
∴(an+an-1)(an-an-1-2)=0∵an>0∴an-an-1=2
∴{an}是首项为a,公差为2的等数列
由a1=S1代入方程a1=
1 |
4 |
a | 2 1 |
1 |
2 |
3 |
4 |
a | 2 1 |
∴a1=3∴an=3+2(n-1)=2n+1
(3)∵Cn=
1 |
(1+2n+1)2 |
1 |
(2n+2)2 |
1 |
(2n+2)2-1 |
1 |
2 |
1 |
2n+1 |
1 |
2n+3 |
∴Tn=C1+C2+…+Cn<
1 |
2 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 |
2n+3 |
1 |
2 |
1 |
3 |
1 |
2n+3 |
1 |
6 |
1 |
2(2n+3) |
1 |
6 |
点评:本题主要考查等差数列的通项公式的应用.涉及了数列的求和、不等式等问题,考查了学生解决实际问题的能力.
练习册系列答案
相关题目