题目内容

5.在所有两位数(10~99)中,任取一个数,能被2或3整除的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{2}$

分析 在所有的两位数(10-99)共有90个,求得其中被2整除的有45个,被3整除的有30个,被6整除的有15个,可得能被2或3整除的数有60个,由此求得这个数能被2或3整除的概率

解答 解:在所有的两位数(10-99)共有90个,其中被2整除的有10,12,14,…,98,共计45个.
被3整除的有12,15,18,…,99,共计30个,
被6整除的有12,18,24,…,96,共计15个,
故能被2或3整除的数有45+30-15=60个.
任取一个数,则这个数能被2或3整除的概率为P=$\frac{60}{90}$=$\frac{2}{3}$.
故选:C.

点评 本题考查古典概型及其概率计算公式的应用,等差数列的通项公式,求得被2或3整除的数有60个,是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网