题目内容
【题目】已知函数在点处的切线方程为, (其中为常数).
(1)求函数的解析式;
(2)若对任意,不等式恒成立,求实数的取值范围;
(3)当时,求证: (其中e为自然对数的底数).
【答案】(1) ;(2) ;(3)详见解析.
【解析】试题分析:(1)对函数求导根据点斜式求出切线方程;(2)构造新函数,则有在上恒成立;对函数求导分类讨论函数的单调性,求出参数范围; (3)令,求导可得取得最小值;构造, 取得最小值;当时, ,得证.
试题解析:(), ,得;又由,得,
所以.
(2)对任意,不等式恒成立;
等价于对任意,不等式恒成立;
令,则有在上恒成立;
;
若,当时, ,所以在上单调递增,
所以,当时, ;
若,当时, ,当时, ,
所以在上单调递减,在上单调递增,
所以当时, ,与题意矛盾;
综上,实数的取值范围为.
(3)令,
;令,解得;
令,解得;∴在上单调递减;在上单调递增;
故当时, 取得最小值;
,
,令,解得;令,解得;
所以在上单调递减;在上单调递增;
故当时, 取得最小值;
所以,当时, ,
即,
当且仅当时,等号成立.
练习册系列答案
相关题目
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元