题目内容
【题目】综合题。
(1)若cos = , π<x< π,求 的值.
(2)已知函数f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ , ],求cos2x0的值.
【答案】
(1)解:由 π<x< π,得 π<x+ <2π,
又cos = ,∴sin =﹣ ;
∴cosx=cos =cos cos +sin sin =﹣ ,
从而sinx=﹣ ,tanx=7;
故原式=
(2)解:f(x)=2 sinxcosx+2cos2x﹣1
= sin2x+cos2x
=2sin(2x+ ),
当f(x0)= 时,
sin(2x0+ )= ,
又x0∈[ , ],∴2x0+ ∈[ , ],
∴cos(2x0+ )=﹣ ,
∴cos2x0=cos[(2x0+ )﹣ ]=﹣ × + × =
【解析】(1)根据同角的三角函数关系,转化法求出cosx、sinx和tanx的值,再计算所求的算式;(2)利用三角恒等变换化简f(x),根据f(x0)= 求出sin(2x0+ )和cos(2x0+ )的值,再计算cos2x0的值.
【考点精析】关于本题考查的同角三角函数基本关系的运用,需要了解同角三角函数的基本关系:;;(3) 倒数关系:才能得出正确答案.
【题目】公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:
车尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).